

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.224

GENETIC VARIATION AND INHERITANCE OF QUALITATIVE FRUIT CHARACTERS IN MELON: EVIDENCE OF DUPLICATE, COMPLEMENTARY AND INHIBITORY GENE ACTIONS

Shivapriya M.1, Rashmi K.2* and Ravishankar K. V.3

¹College of Horticulture, Mysore, Karnataka, India ²College of Horticulture, Bengaluru, Karnataka, India ³Indian Institute of Horticulture Research, Hesaraghatta, Bengaluru, Karnataka, India *Corresponding author E-mail: rashminaikk@gmail.com (Date of Receiving: 20-07-2025; Date of Acceptance: 07-10-2025)

ABSTRACT

A comprehensive study was conducted to investigate the variation and inheritance of qualitative fruit traits in a cross between two contrasting melon genotypes, Kashi Madhu and IC321371. A wide variation observed for all the studied characters such as stigma colour, ovary pubescence, fruit shape at peduncle and blossom end, rind and flesh characteristics. Inheritance study revealed, the F_2 s of melon fruits for fruit rind colour, fruit suture and strength of attachment of fruit segregated 13:3 ratio, further supporting inhibitory epistasis. Fruit grooves showed duplicate gene action. Netting on the fruit surface showed complementary gene action. Flesh colour segregated into orange, green, and orange-green classes, with F_2 conforming to a 1:2:1 ratio ($\chi^2 = 5.045$; P = 0.080), indicating monogenic incomplete dominance. Fruit shape in longitudinal section exhibited oblate, round, and oval types, fitting a 1:2:1 ratio ($\chi^2 = 3.495$; P = 0.174), suggesting incomplete dominance.

Keywords: Melon, qualitative traits, Inheritance, epistasis, incomplete dominance.

Introduction

Melons (*Cucumis melo* L., 2n = 24) are one of the important horticultural crops grown worldwide which belongs to the family Cucurbitaceae. The species, *Cucumis melo* L. is more diverse and polymorphic with respect to fruit related traits such as shape, size, colour, texture, taste and composition than other species in the genus (Pitrat *et al.*, 2000). The diversity observed in melon fruits has prompted researchers to unravel the genetic basis of their qualitative traits, many of which are controlled by simple genes or their interactions.

Genetic investigations in melons began in the late 1930s, leading to the identification of numerous genes associated with seed and seedling traits (Ganesan, 1988; Perin *et al.*, 2002), leaf and foliage (Ganesan and Sambandam, 1979), plant architecture (Gabillard and Pitrat, 1988; Ohara *et al.*, 2001), flower traits (Rosa, 1928; Poole and Grimball, 1939; Wall, 1967) and fruit characters (Rosa, 1928; Hughes, 1948; Kubicki, 1962; Bains and Kang, 1963; Wall ,1967; Davis 1970;

Takada *et al.*, 1975; Ganesan, 1988; Herman *et al.*, 2008; Galperin *et al.*, 2003).

In melons, white rind (Wi) colour of immature fruit was dominant to green (Kubicki, 1962) whereas, in mature fruits white (w) was recessive to dark green fruit skin in a cross between Honeydew (w) and Smiths Perfect cantaloupe (W, dark green) (Hughes, 1948). A polygenic control of external fruit colour was recorded in the cross Piel de Sapo x PI 161375 (Whitaker and Davis, 1962; Monforte et al., 2004; Eduardo et al., 2007; Obando et al., 2008). Single recessive gene (s) was reported to control vein tracts or sutures on fruits (Bains and Kang, 1963; Davis 1970). Ridge fruit surface was reported to be controlled by a single gene (ri in C68), recessive to ridge less (Ri in 'Pearl') (Takada et al., 1975). Single dominant gene govern the development of net tissue regardless of the degree of netting (Lumsden, 1914; Herman et al., 2008). Many genes influence the intensity of flesh colour, but individual major gene determines whether the flesh is

orange (which is dominant), green or white. Recessive alleles of two genes govern green flesh (gf) and white flesh (wf) (Hughes, 1948; Iman et al., 1972). Fruit quality is a polygenic trait, but several individual genes have a major effect. In wild melon populations, fruits may be bitter due to Bif allele (Ma et al., 1997; Parthasarathy and Sambandam, 1981) and mealy flesh texture because of the Me allele (Ganesan 1988). Sour taste is dominant to sweet and a single dominant gene, So-2 (Sour-2) govern the trait (Perin et al., 1999; Burger et al., 2003). A recessive allele (if) for juicy flesh (Chadha et al., 1972) and a dominant allele (Mu) for musky flavour (Ganesan, 1988) have been reported. Sweetness is reported to be controlled by single recessive gene (suc) in a cross between Faqqous (low sucrose) and Noy Yizre el (High sucrose) melons (Burger et al., 2002). The cross between Hara Madhu x Japenese Cantaloupe and Hara Madhu x New Melon showed monogenic control with dominance of green rind over yellow, white flesh over green flesh and less juicy over juicy. Two dominant genes-controlled absence of sutures with complimentary supplementary relationships (Chadha et al., 1972). When green-fleshed Durgapura Madhu was crossed with white-fleshed Lucknow Safeda, F2 showed 3:1 segregation showing that green flesh is governed by a recessive gene (Ramaswamy et al., 1977).

The present investigation was undertaken to assess the variation of some qualitative traits and to gain insights into the genetic basis and inheritance patterns of several economically important fruit traits. Specific focus was given to rind colour, fruit surface grooves, sutures, netting, flesh colour, fruit shape in longitudinal section and the strength of fruit attachment to the peduncle.

Materials and Methods

The experimental material consisted of parents of two different botanical groups *viz.*, Kashi Madhu (*Cucumis melo* var. *chandalak*) and IC231371 (*Cucumis melo* var. *indicus*). The F₁'s, F₂ and backcross populations (BC₁ (P₁) and BC₁ (P₂)) to both the parents were produced. All these six generations were taken for variation and inheritance study during summer 2021 under polyhouse conditions at farmer's field in the Pavagada taluk, Tumkur District.

Observations were systematically recorded across all six generations, namely the parents, F₁, F₂, and backcrosses, following the PPV & FRA DUS guidelines. The characters evaluated included fruit rind colour, presence of grooves, fruit suture, surface netting, flesh colour, fruit shape in longitudinal section, and the strength of fruit attachment to the peduncle at

maturity. To determine the inheritance patterns of these fruit traits, chi-square analysis was performed on the collected data. In addition to these primary descriptors, variation studies were conducted for a broader set of parameters. These included stigma colour, ovary pubescence, fruit shape at the peduncle and blossom ends, intensity of fruit skin colour, fruit suture and its pigmentation, density of surface netting, flesh firmness, fruit flavour, mildness of flavour, and seed coat colour. Collectively, these comprehensive evaluations provided deeper insights into the morphological diversity and inheritance of key fruit quality traits.

Chi square test was performed according to Gomez and Gomez, 1984.

$$\chi^2 = \sum (O-E)^2$$

Ε

O = Observed value; E = Expected value.

Results and Discussion

Stigma colour was visually observed and recorded as light green (11 F_2 , one BC_1 (P_1) and 28 BC_1 (P_2)), medium green (50 F_2 , 33 BC_1 (P_1), 49 BC_1 (P_2), including Kashi Madhu, IC321367 and F_1) and dark green (40 F_2 s, 54 BC_1 (P_1) and 24 BC_1 (P_2)). Ovary pubescence was categorized as dense (76 F_2 s, 77 BC_1 (P_1), 79 BC_1 (P_2) including parents and F_1), Medium (19 F_2 , 11 BC_1 (P_1) and 21 BC_1 (P_2)) & sparse (6 F_2 s and 1 BC_1 (P_2).

Strength of attachment of fruit to peduncle at maturity revealed that, fruits of 17 F_2s , 15 BC_1 (P_1), 0 BC_1 (P_2) including Kashi Madhu and F_1 detached easily during maturity (weak attachment) and fruits of 84 F_2s , 73 BC_1 (P_1), 101 BC_1 (P_2) including the parent IC321371 remained attached to peduncle during maturity (strong attachment). The F_2 population showed 84 non-slippable fruits and 17 slippable fruits. The chi square deviated from the hypothetical 3:1 ratio and fitted to 13:3 ($\chi^2 = 0.243$; P = 0.621) and exhibited inhibitory epistatic gene action. The BC_1 (P_1) generation supported this by segregating into 3:1 ratio with χ^2 of 2.969 (p value = 0.084). The BC_1 (P_2) exhibited 1:0 ratio (101 non-slippable: 0 slippable).

Fruit shape in longitudinal section exhibited a wide range of variation such as oblate (33 F_2 s, 41 BC_1 (P_1) and 0 BC_1 (P_2), Kashi Madhu and F_1), round (43 F_2 s, 46 BC_1 (P_1) and 45 BC_1 (P_2)) and oval (25 F_2 s, 56 BC_1 (P_2) and IC321371). Fruit shape in F_2 generation was classified into oblate (33 lines), round (43 lines) and oval (25 lines). Test of goodness of fit was done to know the segregation pattern and it revealed significant

fit to 1:2:1 ($\chi^2 = 3.495$; P = 0.174) for F₂ generation. The BC₁ (P₁) generation exhibited 1:1 (41 oblate: 46 round) with the χ^2 of 0.295 (p value = 0.586) and BC₁ (P₂) revealed chi square value of 1.198 with a probability of 0.549 and showed a significant fit to 1:1 ratio (45 round: 56 oval).

Fruit shape at peduncle end was classified as round (27 F_2s , 8 BC_1 (P_1) and 25 BC_1 (P_2)), Pointed (22 F_2S , 1 BC_1 (P_1), 14 BC_1 (P_2) and IC321371) and truncate (52 F_2s , 79 BC_1 , 62 BC_1 (P_2), Kashi Madhu and F_1) with respect to blossom end one fruit of BC_1 (P_1), was pointed, 16 F_2s , 4 BC_1 (P_1), 12 BC_1 (P_2) including IC321371 were intermediate and 85 F_2s , 83 BC_1 (P_1), 89 BC_1 (P_2), Kashi Madhu and IC321371 exhibited truncate type of fruit shape at blossom end.

As per the visual assessment, colour of fruit skin was recorded as dark yellow (61 BC₁ (P₁), 81F₂s) and 0 BC₁ (P₂) and lemon yellow (26 F₂s, 27 BC₁ (P₁) and 101 BC₁ (P₂)). In the present study F₁ exhibited lemon yellow fruit rind colour. The F₂ segregated in the ratio 13:3 with the chi square value 2.653 along with probability 0.103 exhibiting inhibitory epistatic. This was supported by BC₁ (P₁) population with the segregation ratio 3:1(χ^2 = 1.515; P = 0.218). the BC₁ (P₂) exhibited 0:1 ratio (0 dark yellow: 101 lemonyellow). Intensity of fruit skin colour was visually observed and grouped as light (37 F₂s, 55 BC₁ (P₁) and 53 BC₁ (P₂)), medium (49 F₂s, 27 BC₁ (P₁), 44 BC₁ (P₂), IC321371 and F₁) and dark (15 F₂s, 6 BC₁ (P₁), 4 BC₁ (P₂) and Kashi Madhu).

Based on the visual observations 95 F_2s , 87 BC_1 (P_1), 82 BC_1 (P_2) including the parent Kashi Madhu and F_1 were found to have grooves on the surface of fruit. Whereas, 6 F_2s , 1 BC_1 (P_1), 19 BC_1 (P_2) and IC321371 did not exhibit grooves on fruit surface. In F_2s , grooves were present in 95 lines and absent in 6 lines. The chi square calculated ($\chi^2 = 0.016$; P = 0.897) was not in agreement with Mendelian ratio of 3:1 and fitted into 15:1 ratio indicating the duplicate gene action. For the backcross to recessive parent, the segregation was 82 present: 19 absent and the χ^2 for the 3:1 expected ratio was 2.062 (p value = 0.150). The backcross to dominant parent exhibited 1:0 (87 present: 1 absent) ratio.

Fruit suture was observed on 80 F₂, 87 BC₁ (P₁), 94 BC₁ (P₂), Kashi Madhu and F₁ and rest of the F₂s, BC₁ (P₁), BC₁ (P₂) including IC321371 were suture less. Among fruits having sutures, 37 F₂s, 48 BC₁ (P₁), 53 BC₁ (P₂), Kashi Madhu and F₁ were having green-coloured sutures, 43 F₂s, 39 BC₁ (P₁) and 41 BC₁ (P₂) were having cream-coloured sutures. For the fruit suture, the F₁ generation indicated presence of suture.

 F_2 plants segregated 80: 21 (present: absent) (χ^2 = 0.276; P = 0.598) and exhibited inhibitory epistatic gene action. Plants in the BC₁ (P_1) generation (parent with fruit suture) segregates 1: 0 (88 present: 0 absent). The BC₁ (P_2) (parent without fruit suture) segregated as expected 3:1 ratio and a χ^2 of 3.594 (p value = 0.057).

Fruit surface netting was classified as absent (47 F_2s , 28 BC_1 (P_1), 65 BC_1 (P_2) and IC321371) and present (54 F_2s , 60 BC_1 (P_1), 36 BC_1 (P_2), Kashi Madhu and F_1). Presence or absence of netting on fruit surface segregated into 9: 7 ratio (54 present: 47 absent) with the chi square value 0.318 (p=0.572) and exhibited complementary gene action. The back cross generation supported this by exhibiting 1:3 (33 present: 68 absent) ratio when crossed to recessive parent (BC_1 (P_2)) while the BC_1 (P_2) (parent with presence of netting) exhibited 1: 0 (85 present: 3 absent). Density of surface netting was classified as moderate (49 F_2s , 39 BC_1 (P_1), 35 BC_1 (P_2) and F_1), dense (5 F_2s , 21 BC_1 (P_1), 1 BC_1 (P_2) and Kashi Madhu).

As per the visual assessment, fruit flesh colour was recorded as green orange (24 F_2 s, 38 BC_1 (P_1),46 BC_1 (P_2) and F_1), orange (58 F_2 s, 50 BC_1 (P_1), 0 BC_1 (P_2) and Kashi Madhu) and green (19 F_2 s, 0 BC_1 (P_1) and 55 BC_1 (P_2) and IC321371. The calculated chi square ($\chi^2 = 5.045$; P = 0.080) of F_2 fitted to 1:2:1 ratio exhibiting monogenic, incomplete dominance. The BC_1 (P_1) generation supported this by fitting to 1:1:0 ratio (38 green orange: 50 orange) with the χ^2 of 0.801 (p value = 0.441) and BC_1 (P_2) revealed chi square value of 0.801 with a probability of 0.669 and showed a significant fit to 1:1 ratio (46 green orange: 55 green).

For fruit flesh firmness, the fruits were divided into three states such as, firm flesh (66 F_2 s, 65 BC_1 (P_1), 78 BC_1 (P_2) including parents and F_1) and intermediate firm (35 F_2 s, 23 BC_1 (P_1) and 23 BC_1 (P_2)). None of the genotypes showed soft flesh.

Presence or absence of fruit flavor was observed organoleptically. All F_2s , BC_1 (P_1), BC_1 (P_2) including parents and F_1 were flavored. Fruit flavor was further subdivided as strong (17 F_2s , 3 BC_1 (P_1), 15 BC_1 (P_2) including parents and F_1), medium (57 F_2s , 72 BC_1 (P_1) and 67 BC_1 (P_2)) and mild (27 F_2s , 13 BC_1 (P_1) and 19 BC_1 (P_2)).

Based on the visual observation, seed colour was classified as white (5 F_2 , 1 BC_1 (P_1), 2 BC_1 (P_2) and Kashi Madhu), cream (12 F_2 s) and creamy white (84 F_2 s, 87 BC_1 (P_1), 99 BC_1 (P_2), IC321371 and F_1).

Discussion

The ovary pubescence was polymorphic in F_2 and backcross *i.e.*, dense, medium and sparse (Table 1). The variation for ovary pubescence was noticed earlier in melons (Kirkbride, 1993; Stepansky *et al.*, 1999; Sudhakara, 2014; Kavya and Manchali, 2019; Chaitra, 2019). Stigma colour was classified as dark green, medium green and light green in the present study. Variation for stigma colour was also noticed in muskmelon segregating population (Kavya, 2017).

Hughes (1948) recorded that white colour of mature fruits was recessive to dark green fruit skin.

Yellow reported to be inherited as a monogenic dominant trait when yellow rind crossed with dark green rind (Tadmor *et al.*, 2010). The variation in skin colour is due to amount of chlorophyll degradation and amount of carotenoids and others pigments exposure or accumulation (Flores *et al.*, 2001). The genes naringerin-chalcone (*Nca*), chlorophyll (*Chl*) and carotenoid (*Car*) control accumulation of pigment in rind of matured fruits. A polygenic control of the external fruit color was reported (Whitaker and Davis, 1962; Monforte *et al.*, 2004; Eduardo *et al.*, 2007; Obando *et al.*, 2008).

Table 1: Variation in F₂ and backcross population derived from the inter-botanical cross Kashi Madhu X IC321371 for qualitative characters

Sl. No.	Character	Classes	\mathbf{F}_2	BC ₁ (P ₁)	BC ₁ (P ₂)	Parents and F ₁	
1	Sex expression	Andromonoecious	101	88	101	Kashi Madhu, IC321371 and F ₁	
		Monoecious	0	0	0		
		Light green	11	1	28		
2	Stigma color	Medium green	50	33	49	Kashi Madhu, IC321371 and F ₁	
		Dark green	40	54	24		
3	Overvinihossenes	Dense	76	77	79	Kashi Madhu, IC321371 and F ₁	
3	Ovary pubescence	Medium	19	11	21		
		Sparse	6	0	1		
4	Strength of attachment of fruit to	Strong	84	73	101	IC321371	
7	peduncle at maturity	Weak	17	15	0	Kashi Madhu and F ₁	
	Fruit shape in longitudinal	Oblate	33	41	0	Kashi Madhu and F ₁	
5	section	Round	43	46	45		
	section	Oval	25	0	56	IC321371	
		Round	27	8	25		
6	Fruit shape at peduncle end	Pointed	22	1	14	IC321371	
		Truncate	52	79	62	Kashi Madhu and F ₁	
		Pointed	0	1	0		
7	Fruit shape at blossom end	Intermediate	16	4	12	IC321371	
		Truncate	85	83	89	Kashi Madhu and F ₁	
8	Color of fruit skin	Dark yellow	81	61	0	Kashi Madhu	
O	Color of fruit skill	Lemon yellow	26	27	101	IC321371 and F ₁	
		Light	37	55	53		
9	Intensity of fruit skin color	Medium	49	27	44	IC321371 and F ₁	
		Dark	15	6	4	Kashi Madhu	
10	Fruit groves	Absent	6	1	19	IC321371	
10	Truit groves	Present	95	87	82	Kashi Madhu and F ₁	
11	Emrit autumas	Absent	21	0	17	IC321371	
11	Fruit sutures	Present	80	88	84	Kashi Madhu and F ₁	
		Green	37	48	53	Kashi Madhu and F ₁	
12	Fruit suture color	Cream	43	39	41		
		Absent	21	1	7	IC321371	
1.0		Absent	47	3	68	IC321371	
13	Fruit surface netting	Present	54	85	33	Kashi Madhu and F ₁	
14	Density of surface netting	Moderate	49	39	35	F ₁	

Sl. No.	Character	Classes	F ₂	BC ₁ (P ₁)	BC ₁ (P ₂)	Parents and F ₁
		Dense	5	21	1	Kashi Madhu
		Absent	47	28	65	IC321371
	Colour of fruit flesh	Green orange	24	38	46	F_1
15		Orange	58	50	0	Kashi Madhu
		Green	19	0	55	IC321371
		Firm	66	65	78	Kashi Madhu,
16	Flesh firmness	1711111	00			IC321371 and F_1
		Intermediate	35	23	23	
		Absent	0	0	0	
17	Fruit flavor	Descent	101	88	101	Kashi Madhu,
		Present	101			IC321371 and F ₁
		Absent	0	0	0	
		Strong	17	3	15	Kashi Madhu,
18	Mildness of fruit flavor	Strong	1 /			IC321371 and F ₁
		Medium	57	72	67	
		Mild	27	13	19	
		White	5	1	2	Kashi Madhu
19	Seed colour	Cream	12	0	0	
		Cream white	84	87	99	IC321371 and F ₁

 F_2 - F_2 generation $BC_1(P_1)$ – F_1 backcross to parent 1 $BC_1(P_2)$ – F_1 backcross to parent 2

Table 2: Chi square analysis of F_2 's and back cross populations derived from the inter-botanical cross Kashi Madhu x IC231371

Sl. No.	Characters	G	Categories	О	E	Ratio	χ^2	P	Gene action	
	Fruit rind color	F ₂	Dark yellow	81	82.03	13:3	2.653	0.103	Inhibitory epistatic	
			Lemon yellow	26	18.93					
1.		BC_1	Dark yellow	61	66.00	3:1	1.515	0.218		
1.		(P_1)	Lemon yellow	27	22.00					
		BC_1	Dark yellow	0		0:1				
		(P_2)	Lemon yellow	101		0.1				
	Fruit grooves	F_2	Present	95	94.65	15:1	0.016	0.897	Duplicate	
			Absent	6	6.31					
2.		BC_1	Present	87		1:0				
۷.		(P_1)	Absent	1						
		BC_1	Present	82	75.75		2.062	0.150		
		(P_2)	Absent	19	25.25	3.1	2.002	0.130		
	Fruit suture	F ₂	Present	80	82.03	13:3	0.276	0.598		
			Absent	21	18.93					
3.		BC_1	Present	88		1:0			Inhibitory	
3.		suture	(P_1)	Absent	0		1.0			epistatic
		BC_1	Present	84	75.75	3:1	3.594	0.057		
		(P_2)	Absent	17	25.25	3.1				
	Netting	F_2	Present	54	56.79	9:7	0.318	0.572		
			Absent	47	44.17					
4.		BC_1	Present	85		1:0			Complementary	
٦.		(P_1)	Absent	3					Complementary	
		BC_1	Present	33	25.25	1:3	3.171	0.074		
		(P_2)	Absent	68	75.75	1.5	3.1/1	0.074		
5.	Flesh color		Green orange	24	22				Monogenic,	
		F_2	Orange	58	44	1:2:1	5.045	0.080	Incomplete	
			Green	19	22				dominance	

Sl. No.	Characters	G	Categories	О	E	Ratio	χ²	P	Gene action
		BC_1	Green orange	38	44.00	1:1	0.801	0.441	
		(P_1)	orange	50	44.00	1.1	0.801	0.441	
		BC_1	Green orange	46	50.50	1:1	0.801	0.669	
		(P_2)	Green	55	50.50	1.1	0.801	0.009	
	Fruit shape	F ₂	Oblate	33	25.25	1:2:1	3.495	0.174	
			Round	43	50.50				Monogenic, Incomplete dominance
			Oval	25	25.25				
6.		BC_1	Oblate	41	44	1:1	0.295	0.586	
		(P_1)	Round	46	44				
		BC_1	Round	45	50.50		1.198	0.549	
		(P_2)	Oval	56	50.50				
	Strength of attachment of fruit	F_2	Non-slippable	84	82.06	13:3	0.243	0.621	Inhibitory epistatic
			Slippable	17	18.93				
7.		BC_1	Non-slippable	73	66	3:1	2.969	0.084	
/.		(P_1)	Slippable	15	22				
		BC_1	Non-slippable	101					
		(P_2)	Slippable	0	-		-		

G = Generations

O - Observed value

E – Expected value

*P- Probability at 0.05%

F₂- F₂ generation

 $BC_1(P_1) - F_1$ backcross to parent 1

 $BC_1(P_2) - F_1$ backcross to parent 2

In the present study, Kashi Madhu had nonprominent grooves/ ridges on fruit surface and IC321371 did not have any ridges. When the parent Kashi Madhu crossed with IC321371, the F₁ exhibited ridge fruit surface. Grooves in fruit was found to be recessive to ridge less (Takada et al., 1975). Inheritance pattern of fruit grooves in muskmelon F₂s found to be controlled by more than one gene in a cross combination of Kashi Madhu x acidulous melon (Kavya and Manchali, 2019). The other studies reported variations for fruit grooves pattern in muskmelon (Stepansky et al., 1999; Pitrat, 2013; Sudhakara, 2014) and also in other groups of melons (Chaitra, 2019).

Absence of sutures was reported as digenically dominant with supplementary relationship (Chadha et al., 1972). But in other studies, it was found to be controlled by a single recessive gene, s (Bains and 1963; Davis 1970). Suture less monogenically dominant over sutured (Hagiwara and Kamimura, 1936; Bains and Kang, 1963; Ramaswamy et al., 1977; Sandhu, 1990; Perin et al., 1999; Kavya and Manchali, 2019). In fruits having suture, its colour varied including cream and green. The variation in suture colour was also observed in intra-specific classification of melons (Stepansky et al., 1999), wild and cultivated melons (Pitrat, 2013), melon landraces (Sudhakara, 2014; Mamatha, 2016), F₂ population of muskmelon (Kavya and Manchali, 2019) and interbotanical groups of melon (Chaitra, 2019).

Fruit surface netting is one of the important traits for shelf-life analysis in melons. Netted melons have

less storage life, that may be a result of the presence of fissured epidermal tissue (netted), which is an elaborated system of lenticels as they are more prone to lose moisture and also the netted rind fruit melons produce higher amounts of ethylene at the stage of ripening (Pratt, 1971). In the present study, fruit surface netting was found to be controlled by more than one gene in the cross Kashi Madhu x IC321371. Control of netting by two dominant genes over smoothness was reported in muskmelon (Ramaswamy et al., 1977). Digenic control of netting was recorded in muskmelon (Kavya, 2017). Netting in melon was reported as monogenic and partially dominant over smoothness (Sandhu, 1990). Single dominant gene governing the development of net tissue regardless of the degree of netting was observed by Herman et al. (2008).

In the present study, when oblate fruited plants crossed with oval fruited one, oblate shape was obtained. fruit shape in melon was found to be incompletely dominant. Fruit shape was reported to be controlled by a single gene O (Oval shape), dominant to round (Wall, 1967). Spherical fruit shape is controlled by a single gene (sp) recessive to an obtuse fruit shape (Lumsden, 1914; Bains and Kang, 1963). Fruit shape in F₂ melon was found to be incompletely dominant (Kavya and Manchali, 2019).

In the present study, Orange flesh-coloured parents crossed with green, double coloured (orangegreen) fruits were observed in F₁ and showed monogenic. Co-dominance in the cross Kashi Madhu x IC321371. Melon fruit flesh color reported to be Shivapriya M. et al.

controlled by two genes, green flesh (gf), recessive to orange flesh (Hughes, 1948; Bains and Kang, 1963; Sandhu, 1990) and white flesh (wf) (Iman et al., 1972; Chadha et al., 1972). The development of flesh colour is an ethylene-independent trait. Flesh colour is an important trait from the consumer point of view. The expression of colour in the fruit flesh is conditioned by the particular carotenoid type and concentrations, which are influenced by genetic and environmental factors. Variation in fruit flesh colour was also noticed in landraces (Bokashi et al., 1992; Stepansky et al., 1999; Fergany et al., 2011; Aragao et al., 2013; Malik et al., 2014) and wild and cultivated melons (Pitrat, 2013).

In cross Kashi Madhu x IC321371 all the generations have only firm pulp textured fruits. The flesh texture at fruit maturity can be mealy (with no consistency) as in *flexuosus* or *momordica* type and it can also be crispy, firm, juicy, dry or fibrous (Pitrat, 2016). The variation in the flesh firmness from firm to soft flesh were recorded in muskmelon cultivars (Khokhar *et al.*, 1988), wild and cultivated melons (Pitrat, 2013) and muskmelon landraces (Sudhakara, 2014; Mamatha, 2016).

the present investigation, strength of attachment of fruit to peduncle at maturity stage was recorded as slippable and non-slippable in parents as well as their progenies in different generations. Some melon fruits when ripe develop an abscission layer at the attachment zone between the fruit and the stem, whereas, others remain attached to the stem even after they are ripe (Kirkbride, 1993). Fruit abscission at maturity was reported to be controlled by two independent loci (Takada et al., 1975). In the present study, non-slippabale was dominant and digenic in the cross Kashi Madhu x IC321371. A single dominant gene (Al-5) was reported to control fruit abscission layer formation in the climacteric western shipper type (Zheng et al., 2002). A wide variation for fruit shape at peduncle and blossom end was reported in other studies (Stepansky et al., 1999; Pitrat, 2013; Sudhakara, 2014; Kavya, 2018; Chaitra, 2019).

Fruit taste was sensory evaluated for its sweetness. Fruit taste categorized as sweet, less sweet and sour in the present study. All the three crosses exhibited sweet and less sweet, whereas Kashi Madhu x IC321371 did not exhibit sour type melons. Different categories of fruit taste recorded in muskmelon (Kavya, 2018). High value of total sugars is desirable because of consumer preferences but the sugar content varies depending upon the different fruit parts in melon (Chrost and Schmitz, 1996; Yativ *et al.*, 2010) and also

variation in sucrose levels accounts for the genetic differences in total sugar content and for the natural variability within a particular cultivar due to environmental differences (Stepansky *et al.*, 1999).

Based on the visual observation, seed colour was classified as white, cream and creamy white. Earlier, Pitrat (2013) studied seed colour variation in melons and noted that seed colour can be white or brown in both wild and cultivated melons. Creamish yellow and white coloured seeds were noticed in local melon types of Karnataka (Sudhakara, 2014) and in muskmelon (Kavya, 2018).

Presence or absence of fruit flavour was sensory evaluated. All the crosses exhibited variation for fruit flavor and intensity of fruit flavor. Variation for fruit flavour recorded in muskmelon cultivars (Khokhar *et al.*, 1988), wild and cultivated melons (Pitrat, 2013), melon landraces (Sudhakara, 2014), muskmelon (Kavya, 2018). Variation in fruit flavour is a result of concentration of complex mixtures of volatile compounds in the fruits (Jordan *et al.*, 2001; Shalit *et al.*, 2001).

Conclusion

The present investigation on the cross Kashi Madhu × IC321371 revealed significant morphological variation and diverse patterns of inheritance for fruitand plant-related traits in melon. Traits such as stigma colour and ovary pubescence were polymorphic, while fruit rind colour, grooves, sutures, and netting exhibited non-Mendelian ratios, confirming the role of epistatic and duplicate gene actions. Fruit shape in longitudinal section and flesh colour followed a 1:2:1 segregation ratio, indicating monogenic inheritance with incomplete dominance. Traits such as strength of attachment of fruit to peduncle (slippable vs. nonslippable) and fruit sutures showed evidence of inhibitory epistasis, while fruit netting segregated according to complementary gene action. Overall, the study demonstrated that the inheritance of key fruit traits in melon is governed by a combination of monogenic, polygenic, and epistatic interactions. These findings provide valuable insights into the genetic architecture of melon and will serve as a useful resource for breeders aiming to develop cultivars with desirable fruit quality, enhanced shelf life, and consumer-preferred characteristics.

References

- Aragao, F. A. S. J., Torres, F., Nunes, G. H. S., Queiroz, M. A., Bordallo, P. N., Buso, G. S. C., Ferreira, M. A., Costa, Z. P. and Bezerra, F. N. (2013). Genetic divergence among accessions of melon from traditional agriculture of the Brazilian Northeast. *Genet. Mol. Res.*, 12 (4), 6356-6371.
- Bains, M. S. and Kang, U. S. (1963). Inheritance of some flower and fruit characters in muskmelon. *Indian J. Genet. Plant. Breed.*, **23**, 101-106.
- Bokashi, A. I., Mondal, S. N. and Monowar, H. (1992). Studies on the performance of muskmelon hybrids. *Indian J. Hort.*, **49**(4), 354-357.
- Burger, Y., Saar, U., Distelfeld, A., Katzir, N., Yeselson, Y., Shen, S. and Schaffer, A. A. (2003). Development of sweet melon (*Cucumis melo*) genotypes combining high sucrose and organic acid content. *J. American Soc. Hortic. Sci.*, **128**(4), 537-540.
- Burger, Y., Saar, U., Katzir, N., Paris, H. S., Yeselson, Y., Levin, I. and Schaffer, A. A. (2002). A single recessive gene for sucrose accumulation in *Cucumis melo* fruit. *J. American Soc. Hortic. Sci.*, 127, 938-943.
- Chadha, M. L., Nandpuri, K. S. and Singh, S. (1972). Inheritance of some fruit characters in Musk-Melon. *Indian J. Hort.*, 29(1), 58-62.
- Chaitra (2019). Studies on genetic diversity and crossing ability among inter-botanical groups of melon (*Cucumis melo* L.). *M.Sc. Thesis, Univ. Hortic. Sci.*, Bagalkot (India), pp. 1-120.
- Chrost, B. and Schmitz, K. (1996). Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (*Cucumis melo* L.) fruit development. *J. Plant Physiol.*, **151**, 41-50.
- Davis, R.M. (1970). Vein Tracts, Not Sutures, in Cantaloupe1. *Hort. Sci.*, **5**(2), 86-86.
- Eduardo, I., Arus, P., Monforte, A. J., Obando, J., Fernandez-Trujillo, J. P., Martinez, J. A., Alarcon, A. L., Alvarez, J. M., Knaap, V. N. E. (2007). Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. *J. American Soc. Hortic. Sci.*, **132**, 80-89.
- Fergany, M., Balvir, K., Monforte, A. J., Pitrat, M., Lecoq, H., Dhillo, N. P. S. and Dhaliwal, S. S. (2011). Variation in melon (*Cucumis melo*) landraces adapted to the humid tropics of Southern India. *Genet. Resour. Crop Evol.*, 58, 225-243.
- Flores, F., Ben, A. M., Jones, B., Pech, J. C., Bouzayen, M., Latche, A. and Romojaro, F. (2001). The use of ethylene-suppressed lines to assess differential sensitivity to ethylene of the various ripening pathways in cantaloupe melons. *Physiologia Plantarum*, **113**, 128-133.
- Gabillard, D. and Pitrat, M. (1988). A fasciated mutant in *Cucumis melo. Cucurbit Genetics Cooperative Rep.* 11, 37-38.
- Galperin, M., Zelcer, A. and Kenigsbuch, D. (2003). High competence for adventitious regeneration in the BU-21/3 melon genotype is controlled by a single dominant locus. *Hort. Sci.* 38, 1167-1168.
- Ganesan, J. and Sambandam, C. N. (1979). Inheritance of certain qualitative characters in muskmelon (*Cucumis melo* L.). *Annamalai Uni. Agric. Res. Ann.*, **9**, 41-44.

- Ganesan, J. (1988). Genetic studies on certain characters of economic importance in muskmelon (*Cucumis melo L.*). Annamalai *Uni*. (India).
- Gomez, K.A. and Gomez, A.A. (1984). Statistical procedure for agricultural research (III Ed.) John Wiley and sons. New York, pp. 680.
- Hagiwara, T. and Kamimura, K. (1936). Cross-breeding experiments in *Cucumis melo*. Tokyo Horticultural School Publication, pp.75-85
- Herman, R., Zvirin, Z., Kovalski, I., Freeman, S., Denisov, Y.,
 Zuri, G., Katzir, N. and Perl-Treves, R. (2008).
 Characterization of Fusarium race 1.2 resistance in melon and mapping of a major QTL for this trait near a fruit netting locus. Proceedings of the IXth Eucarpia Meeting on Genetics and Breeding of Cucurbit. pp. 149-156.
- Hughes, M.B. (1948). The inheritance of two characters of Cucumis melo and their interrelationship. Proceedings American Soc. Hortic. Sci., 52, 399-402.
- Iman, M. K., Abo-Bakr, M. A., Hanna, H. Y. (1972).
 Inheritance of some economic characters in crosses between sweet melon and snake cucumber. I. Inheritance of qualitative characters. Assiut J. Agric. Sci., 3, 363-380.
- Jordan, M. J., Shaw, P. E. and Goodner, K. L. (2001). Volatile components in aqueous essence and fresh fruit of *Cucumis melo* cv. Athena (muskmelon) by GC-MS and GC-O. *J. Agri. Food Chem.*, 49, 5929-5933.
- Kavya, K. R. and Manchali, S. (2019). Inheritance pattern of F₂ population of melon (*Cucumis Melo*. L) for various fruit traits and ovary characters. *Int. J. Curr. Microbiol. App. Sci.*, 8(11), 2091-2096.
- Kavya, K. R. (2017). Variability studies in melon (*Cucumis melo* L.) F₂ population for resistance to downy mildew and powdery mildew diseases and morphological traits. M. Sc. (Hort.) Thesis, Univ. Hortic. Sci., Bagalkot (India).
- Khokhar, K. M., Zahur, A., Hussain, S. I. and Tariq, M. (1988). Comparative studies on the evaluation of some foreign and local muskmelon cultivars. *J. Agric. Res.*, **9**(4), 552-555
- Kirkbride, J. H. (1993). Biosystematic monograph of the genus *Cucumis* (Cucurbitaceae). *Parkway publishers*, Boone (NC, US).
- Kubicki, B. (1962). Inheritance of some characters in muskmelons (*Cucumis melo L.*). *Gen Pol.*, 265-274.
- Lumsden, D. (1914). Mendelism in melons. New Hampshire Agricultural Experiment Station Bulletin, **172**, 58.
- Ma, D., Sun, L., Liu, Y. H., Zhang, Y. and Liu, H. (1997). A genetic model of bitter taste in young fruits of melon. *Cucurbit Genet. Coop. Rep.*, **20**, 27-29.
- Malik, A. A., Vashisht, V. K., Kuldeep, S., Abhishek, S., Singh,
 D. K., Hira, S., Monforte, A. J., James, D. and Narinder,
 P. S. D. (2014). Diversity among melon (*Cucumis melo*L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with USA melon cultivars.
 Genet. Resour. Crop. Evol., 61, 1189-1208.
- Mamatha (2016). Studies on genetic diversity using morphological characters and health beneficial components in muskmelon (*Cucumis melo L.*). *M.Sc. Thesis, Univ. Hortic. Sci.*, Bagalkot (India), pp. 1-117.

Shivapriva M. et al.

- Monforte, A.J., Oliver, M., Gonzalo, M.J., Alvarez, J. M., Dolcet Sanjuan, R. and Arus, P. (2004). Identification of quantitative trait loci involved in fruit quality traits in melon (*Cucumis melo L.*). Theor. Appl. Genet., 108, 750– 758.
- Obando, J., Fernandez-Trujillo, J. P., Martinez, J. A., Alarcon, A. L., Eduardo, I., Arus, P. and Monforte, A. J. (2008). Identification of melon fruit quality quantitative trait loci using near-isogenic lines. *J. American Soc. Hortic. Sci.*, 133, 139-151.
- Ohara, T., Kojima, A., Wako, T. and Ishiuchi, D. (2001). Inheritance of suppressed-branching in melon and its association with some other morphological characters. *J. Japanese Society Hortic. Sci.*, **70**, 341-345.
- Périn, C., Dogimont, C., Giovinazzo, N., Besombes, D., Guitton, L., Hagen L. and Pitrat, M. (1999). Genetic control and linkages of some fruit characters in melon. *Cucurbitaceae Genet. Coop. Rep.*, 22, 16-18.
- Perin, C., Hagen, L., Giovinazzo, N., Besombes, D., Dogimont, C. and Pitrat, M. (2002). Genetic control of fruit shape acts prior to anthesis in melon (*Cucumis melo L.*). *Mol. Genet. Genomics.*, **266**, 933-41.
- Pitrat, M. (2013). Phenotypic diversity in wild and cultivated melons (*Cucumis melo*). *Plant Biotech.*, 30, 273–278.
- Pitrat, M. (2016). Melon Genetic Resources, Phenotypic diversity and horticultural taxonomy. In, Genetics and Genomics of Cucurbitaceae, Plant Genetics and Genomics, Crops and Models. *Springer Inter. Pub.*, pp. 128-145.
- Pitrat, M., Hanelt, P. and Hammer, K. (2000). Some comments on intraspecific classification of cultivars of melon. *Acta Hortic.*, **510**, 29–36.
- Poole, C. F. and Grimball, P.C. (1939). Inheritance of new sex forms in *Cucumis melo L. J. Heredity.*, **30**, 21–25.
- Pratt, H. (1971). Melons, In biochemistry of fruits and their products, Hulme A (eds), Academic Press, London. pp. 207–232.
- Ramaswamy, B., Seshadri, V. S. and Sharma, J. C. (1977). Inheritance of some fruit characters in muskmelon. *Sci. Hortic.*, **6**(2),107-120.

- Rosa, J. T. (1928). The inheritance of flower types in Cucumis and Citrullus. *Hilgardia*, **3**, 233-250.
- Sandhu, H. S. (1990). Genetic studies in muskmelon. *M. Sc. thesis PAU*, Ludhiana (India).
- Shalit, M, Katzir, N., Tadmor, Y., Larkov, O., Burger, Y., Schalechet, F., Lastochkin, E., Ravid, U., Amar, O., Edelstein, M. and Lewinsohn, E. (2001). Acetyl CoA, alcohol acetyl transferase activity and aroma formation in ripening melon fruits. J. Agric. Food Chem., 49, 794-799.
- Stepansky, A., Kovalski, I. and Rafael, P. T. (1999). Intraspecific classification of melons (*Cucumis melo L.*) in view of their phenotypic and molecular variation. *Plant Syst. Evol.*, **217**, 313-333.
- Sudhakara, T. (2014). Characterization of muskmelon local types of Karnataka for morphological traits, nutritional qualities and resistance to downy mildew disease. *M. Sc. Thesis, Univ. Hortic. Sci.*, Bagalkot (India), pp. 1-91.
- Tadmor, Y., Burger, J., Yaakov, I., Feder, A., Libhaber, S. E., Portnoy, V., Meir, A., Tzuri, G., Saar, U., Rogachev, I. and Aharoni, A. (2010). Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. *J. Agric. Food Chem.*, **58**(19), 10722-10728.
- Takada, K., Kanazawa, K., Takatuka, K. and Takatsu, K. A. (1975). Studies on breeding for resistant to powdery mildew in melon I varietal differences in resistance and the breeding of the variety sunrise. *Bull. Veg. Orna. Crop Res. Station*, 1, 59-91.
- Wall, J. R. (1967). Correlated inheritance of sex expression and fruit shape in *Cucumis melo. Euphytica*, **16**, 199-208.
- Whitaker, T. W. and Davis, G. N. (1962). *Cucurbits*, botany, cultivation and utilization. *New York, Inter. Sci.*, 250.
- Yativ, M., Haray, I. and Wolf, S. (2010). Sucrose accumulation in watermelon fruits, Genetic variation and biochemical analysis. *J. Plant Physiol.*, **167**, 589-596.
- Zheng, X. Y., Wolff, D. W. and Crosby, K. M. (2002). Genetics of ethylene biosynthesis and restriction fragment length polymorphisms (RFLPs) of ACC oxidase and synthase genes in melon (*Cucumis melo* L.). *Theor. Appl. Genet.*, **105**, 397-403.